Credit: Brown University/OrbitBeyond

The Woodlands, Texas – Moon exploration via an ultra-small rover about the size of a printer.

Planetary scientists at Brown University are collaborating with the New Jersey-based company, OrbitBeyond, to plan the scientific mission of a small-scale lunar rover.

The rover was originally designed to compete for the Google Lunar X PRIZE by a team of engineers (TeamIndus) based in India. Now OrbitBeyond plans to launch the rover in 2020.

Late last year, NASA announced nine U.S. companies are eligible to bid on NASA delivery services to the lunar surface through Commercial Lunar Payload Services (CLPS) contracts. OrbitBeyond is one of those nine firms.

The project is being presented here at Microsymposium 60, a meeting held here prior to the start of the 50th Lunar and Planetary Science Conference (LPSC), March 18–22.

This year, an LPSC special focus is on private companies that are working on ways to send payloads — rovers and other cargo — to the Moon.

Credit: OrbitBeyond

Science from scratch

Brown University PhD candidates, Ashley Palumbo and Ariel Deutsch, led a team of students who mapped the tiny rover’s landing area, and set scientific goals for the mission.

“We were able to design specific scientific measurements that OrbitBeyond will be able to acquire with the payload that already existed on this tiny rover,” Palumbo said.

“Essentially what we got to do… is design the scientific aspect of this mission from scratch, which isn’t something that you ever get to do at the education level we’re at right now,” Palumbo said. Toward the end of the class, the students had the chance to present their design reference mission to members of OrbitBeyond.

Deutsch says there are increased opportunities for research, as commercial space exploration companies expand. “It’s allowing people to put more experiments on the Moon, and at the same time it’s also driving down the cost.”

NASA’s Lunar Reconnaissance Orbiter image of Moon’s Mare Imbrium region. Credit: Goddard Space Flight Center/Arizona State University

Young volcanic field

The plan calls for the OrbitBeyond rover to land in a relatively young volcanic field in the Moon’s Mare Imbrium region and will use high definition cameras to study the surrounding terrain. The small-scale rover has forward and backward facing cameras, which the team will use to study the lunar terrain.

“By visiting those lava flows from these recent volcanic events, we can learn so much about how volcanism has changed through time, on the Moon,” Palumbo explained.

Scientific output

The Brown University class, taught by Jim Head, a distinguished professor of geological science, combined lectures on lunar evolution with writing a design reference mission for the lunar rover.

The students in Head’s class were tasked with figuring out what science the rover would be capable of doing, given the competition’s constraints.

Head said that, in small groups, students were able to focus on different questions with the goal of optimizing the scientific output of the rover’s mission. Some students evaluated what data to collect, while others looked into the best landing sites from a scientific perspective. Another group, he said, researched how the rover could best navigate the Moon with only a single solar panel as an energy source.

Note: This article is partly based on Sofia Rudin’s The Public’s Radio show, aired here:

Leave a Reply